مقایسه کارایی حذف رنگ دیسپرس آبی ۵۴ از فاضلاب سنتیک با استفاده از آلوم و کلروفوک

پژوهشگر ۱: فاطمه سمعی ۲: صلاح عزیز ۳

گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی همدان

کمیته تحقيقات دانشجویی، دانشکده بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی همدان

نوبستند، مسئول: همدان. رو به روی پارک مردم، دانشگاه علوم پزشکی همدان، دانشکده بهداشت. کمیته تحقيقات دانشجویی

ایمیل: salah.azizig@yahoo.com

چکیده

مقدمه و هدف: فاضلاب صنایع نساجی از جمله صنایع هستند که آلودگی زیادی ایجاد کرده و برای رنگ زدایی صنایع نساجی روش‌های متفاوت وجود دارد که می‌توان به روش‌های انقاذ و لخته‌سازی، اکسیداسیون شیمیایی، تصفیه بیولوژیکی، تکنیک الکتروشیمیایی، ترکیب یونی و دیگر فرآیندهای اشاره کرد. هدف از انجام این پژوهش بررسی مقایسه کارایی آلوم و کلروفوک حذف رنگ دیسپرس آبی ۴۴ می‌باشد.

مواد و روش‌ها: این تحقیق یک مطالعه تجریبی - مداخله‌ای می‌باشد که در میکاس آزمایشگاهی و براساس روش جاری تست انگاج شد. با استفاده از سود و اسید سولفوریک، مواد متعادل کننده با غلظت‌های مختلف بهره بسته شده و به ترتیب pH ۷.۵،۶،۵،۵.۵،۵.۴،۵.۴ و ۵.۴ بود. همچنین برای آلوم شال pH ۵،۴،۴.۵،۴.۷، ۵ و ۵.۸ بود. pH بهره‌های آن‌ها Boost از انقاذ توسط آلوم برای حذف رنگ دیسپرس آبی دارای pH بهره‌های آن‌ها Boost دوز بهره‌های آن‌ها Boost pH و دوز بهره‌های آن‌ها Boost pH ۹۳ درصد می‌باشد و حالت که برای کلروفوک در pH بهره‌های آن‌ها Boost ۹۶ درصد بهره‌های آن‌ها Boost ۱۲۰ دارای راندمان حذف پیش از ۹۸ درصد است.

یافته‌ها: انقاذ توسط آلوم برای حذف رنگ دیسپرس آبی دارای pH بهره‌های آن‌ها Boost دوز بهره‌های آن‌ها Boost pH و دوز بهره‌های آن‌ها Boost pH و دوز بهره‌های آن‌ها Boost pH ۱۲۰ دارای راندمان حذف بهره‌های آن‌ها Boost ۹۸ درصد است.

بحث و نتیجه‌گیری: نتایج این تحقیق شانس داد که با استفاده از فرآیند انقاذ میتوان به میزان زیادی رنگ دیسپرس آبی موجود در فاضلاب صنایع نساجی را از فاضلاب حذف کرد و همچنین نتایج شانس داد که متبین کننده کلروفوک دارای راندمان حذف بهتری نسبت به آلوم می‌باشد و (۵/۰ < P-value).

واژه‌های کلیدی: آلوم، کلروفوک، دیسپرس آبی ۵۴، فاضلاب صنایع نساجی

References

3. salah.azizi9@yahoo.com
روش تهیه شده با استفاده از آگوئی ناشی از فعالیت این

مانند می‌باشد که با پایش الباهی و فعالیت می‌باشد. به طور

ویژه در تصفیه خانه آب و فعالیت مورد استفاده قرار می‌گیرد. کلروفیل (کلروفیل گردازه اگر در می‌باشد. از مواد مصرفی گردید. از این مخاطرات بررسی می‌باشد. مواد نرگون

یک تحقیق یک مطالعه تجاری-مداله ای می‌باشد که در

مقایسه آزمایشگاهی انجام شد. از تحقیق از کی دکسترها

ساخت شست خانه (دلیل ساخت ژن نرگه‌ای خاک‌سازی) انجام شد. این آزمایشگاهی به موفقیت "pH" بوده است. این تحقیق توسط

یک نرم‌ها و یک نرم‌ها در محصولات به آن مربوط نمی‌باشد. از روش‌های محدوده

Pharmaspec UV/Vis (شیمادزو) ، منحنی کلاپرالاسیون در طول موج ۵۵۰ تا ۲۰۰۰ یرم (Shimadzo) ، منحنی کلاپرالاسیون در طول موج ۵۵۰ تا ۲۰۰۰ یرم (Shimadzo) .

، emphasize(ب) دلائل تحقیق تجاری-مداله ای می‌باشد که در

حقیقت برای انتخاب و درست بهشتی و البایی یک مدل بایستی است و حتی

در بعضی از موارد روشن یا در روشنی که می‌باشد. به در حد

کامال به یک دقیقه با دور سریع ۴۵۰ میلی دور به

بة که از دیدگاه جاری در هر یک از شرایط جاری ۴۵۰ میلی دور به

derivatives در بیشترین پایه و پایه از چرخش آزمایش‌ها. بعضی از

اقشار و چربی درست. اگر رنگ گردید. از این مخاطرات بررسی می‌باشد. مواد نرگون

توسط ماه مصرفی گردید. عملکردی هم انجام شد در ضمن

موردن سایر دستگاه‌های کروماتوگرافی در ۴۳، ۵، ۸ و ۳ تریم

در مواد سایر دستگاه‌های کروماتوگرافی در ۴۳، ۵، ۸ و ۳ تریم

، ترکیبی شامل آزمایشگاه‌های کروماتوگرافی، کوارک و کوارک و

، ترکیبی شامل آزمایشگاه‌های کروماتوگرافی، کوارک و کوارک و

پیامدهای مختلفی از جمله

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم

ورزشکاران و همکاران

روش ۱۹، ۱۸ و ۱۷ سنجش شده و در ۳ تریم
بافت‌ها
در شکل شماره ۱ و ۲ نتایج بدست آمده با استفاده از منتقد کننده pH داده شده است. پایین‌تر ها pH به‌شکل احتمال حذف نگ دیسپرس از فاصله مناسب برای حذف کننده pH معناداره pH می‌باشد. کننده pH معناداره pH در شرایط مختلف pH می‌باشد. مقدار pH برابر ۶ حاصل آمده. نتایج آنالیز آماری آنالیز واریانس یکطرفه pH برای روی فرآیند حذف نگ توسط pH کننده معنادار می‌باشد (P-value < ۰/۰۵)

جدول (۱): خصوصیات هریک از مواد منتقد کننده

<table>
<thead>
<tr>
<th>کلیه</th>
<th>فرسی</th>
<th>نام</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۳۳</td>
<td>HCL ۳۰٪ (آسم)</td>
<td>۱۸۹۸ H۲O</td>
</tr>
<tr>
<td>۱/۴۰</td>
<td>NaCl ۹۰٪ (آسم)</td>
<td>NaCl ۵,۵,۵</td>
</tr>
<tr>
<td>کلیه</td>
<td>آب</td>
<td></td>
</tr>
</tbody>
</table>

![شکل ۳: رادانمان حذف نگ دیسپرس ایبی توسط فرآیند انقاذ با آلوم در منطقه pH][1]

![شکل ۴: رادانمان حذف نگ دیسپرس ایبی توسط فرآیند انقاذ با آلوم در منطقه pH][2]

![نحوه و نتیجه‌گیری][3]
دلال حذف پهلوی گند دیبرس توسط کلروفیک میتوان به تشکیل لخته های سنگین تر توسط این ماده معقده کندن نسبت به آلومینیوم (Al).

با اضافه کردن آلوم به واکنش زیر انجام می شود.

\[\text{Al}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O} \rightarrow 2\text{Al}(_{(\text{OH})}_3 + 3\text{H}_2\text{SO}_4 \]

که علاوه بر تولید هیدروکسید آلومینیوم، که در هنگام ته سیز کنیدان، الکترود گازی که تولید می شود به جای ته نشان باعث شناسایی آنها مشود از این شود زیرا می تواند اکسیژن تبدیل به یکی از این

\[\text{Ca}(_{(_{\text{CO}_3})}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + 2\text{CO}_2 + 2\text{H}_2\text{O} \]

ثبات کردن pH و کنترل pH در انعقاد سازی بسیار مهم است (12). واکنش کلروفیک با این نیاز صورت زیر می گیرد.

\[\text{FeCl}_3 + 3\text{H}_2\text{O} \rightarrow \text{Fe}(_{(\text{OH})}_3 + 3\text{HCl} \]

اگر قلبیانات آب به اندازه کافی برای ترکیب با اسید تیلوزی نباشد درمان صورت به این ماده قلیایی چون آلکس، سود و سوادا اضافه کردن انعقاده و تیلوزی به محدوده مناسب باشد. (که برای این ماده معقده pH کننده ای pH مناسب تقلیل می کند) درمان صورت لخته های ایجاد شده روی سیستم شکننده و در مراحل بعدی ایجاد کندن (13).

پی مقایسه از حذف گند دیبرس و راکتیو به وسیله انعقاد شیمیایی و انعقاده اگر گرفت، نتیجه کار آنها نشان داد که ماده رنگزایی (park) دیبرس به خاطر حلالیت کمتر و نسبت کمتر اکسیژن مورد

Downloaded from psj.umsha.ac.ir at 17:41 +0430 on Thursday March 26th 2020
Comparison of Performance Evaluation of Aluminium Sulfate and Ferric Chloride for Removal of Disperse Blue 56 from Synthetic wastewater

Reza Shokoohi 1, Fateme Samiee 2, Salah Azizi 2

1 Department of Environmental Health, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
2 Student Research Committee, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Introduction: Industries are textile wastewater contains large amounts of color can create a lot of pollution. There are different methods for decolorization of textile industries, for example the methods of coagulation, flocculation, chemical oxidation, biological treatment, electrochemical techniques, including ion exchange and other processes. The purpose of this study was to compare the efficacy of alum and ferric chloride is used to remove dye Disperse Blue 56.

Material & Methods: The research was according to the method Jar test. The sample pH was adjusted using NaOH and sulfuric acid 0.1 normal. Coagulants with different concentrations were added to each sample. A minute of high speed and slow speed were mixed for 15 minutes and after deposition, sample pH and absorbance values were measured. The dye concentration in the samples was measured by spectrometry method using a UV1700- Pharmaspec Shimadzo spectrophotometer at 550 nm wavelength.

Results: Coagulation by alum to remove dye Disperse Blue has a pH optimum of 6 and optimal dose of 130 milligrams per liter, which is the pH and the optimal dose has a removal efficiency of 93 percent, while for Chloroferric the pH optimum of 9 and optimal dose of 120 milligrams per liter with removal efficiency over 98 percent.

Discussion: The results showed that the coagulation process using a lot of blue disperses dyes in textile wastewater removed from the wastewater. The results showed that the coagulant is alum Chloroferric has better removal efficiency.

Key Words: Aluminium Sulfate, Ferric Chloride, Disperse Blue 56, Synthetic wastewater

21. kashefi asl M, aminipana L. Treatment of textile dye effluents Environmental Science and Technology. 46-137:(2)8;2002. (Persian)
