1. Gümüş H, Erat T, Öztürk İ, Demir A, Koyuncu I. Oxidative stress and decreased Nrf2 level in pediatric patients with COVID‐19. J Med Virol. 2022; 94(5): 2259-2264. [
DOI:10.1002/jmv.27640] [
PMID]
2. Aydin O, Oğuz Kaynak M, Sabuncuoglu S, Girgin G, Derin Oygar P, Ozsurekci Y, et al. The effects of COVID-19 on oxidative stress and antioxidant defense mechanism in children. J Pediatric Infect Dis. 2022;17(02): 112-118. [
DOI:10.1055/s-0042-1743577]
3. Perrone S, Cannavò L, Manti S, Rulli I, Buonocore G, Esposito SMR, et al. Pediatric multisystem syndrome associated with SARS-CoV-2 (MIS-C): the interplay of oxidative stress and inflammation. Int J Mol Sci. 2022;23(21): 12836. [
DOI:10.3390/ijms232112836] [
PMID]
4. Rychkova LV, Darenskaya MA, Semenova NV, Kolesnikov SI, Petrova AG, Nikitina OA. Oxidative stress intensity in children and adolescents with a new coronavirus infection. Int J Biomed. 2022;12(2):242-246. [
DOI:10.21103/Article12(2)_OA7]
5. Bakadia BM, Boni BOO, Ahmed AAQ, Yang G. The impact of oxidative stress damage induced by the environmental stressors on COVID-19. Life sci. 2021;264: 118653. [
DOI:10.1016/j.lfs.2020.118653] [
PMID]
6. Khan G. A novel coronavirus capable of lethal human infections: an emerging picture. Virol J. 2013; 10(1): 66. [
DOI:10.1186/1743-422X-10-66] [
PMID]
7. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3(6):e00473-12. [
DOI:10.1128/mBio.00473-12] [
PMID]
8. Drosten C, Seilmaier M, Corman VM, Hartmann W, Scheible G, Sack S, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13(9): 745-751. [
DOI:10.1016/S1473-3099(13)70154-3] [
PMID]
9. Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med. 2020;20(2): 124-127. [
DOI:10.7861/clinmed.2019-coron] [
PMID]
10. Chang R, Ng TB, Sun WZ. Lactoferrin as potential preventative and treatment for COVID-19. Int J Antimicrob Agents. 2020;56(3):106118. [
DOI:10.1016/j.ijantimicag.2020.106118] [
PMID]
11. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539. [
DOI:10.1007/s00281-017-0629-x] [
PMID]
12. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-432. [
DOI:10.1002/jmv.25685] [
PMID]
13. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422. [
DOI:10.1016/S2213-2600(20)30076-X] [
PMID]
14. Peng S, Zhang B, Yao J, Duan D, Fang J. Dual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PC12 cells. Food Funct. 2015;6(6): 2091-2100. [
DOI:10.1039/C5FO00097A] [
PMID]
15. Ghazavi A, Mosayebi G, Solhi H, Rafiei M, Moazzeni SM. Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunol Lett. 2013;153(1): 22-26. [
DOI:10.1016/j.imlet.2013.07.001] [
PMID]
16. Graciano-Machuca O, Villegas-Rivera G, López-Pérez I, Macías-Barragán J, Sifuentes-Franco S. Multisystem inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: role of oxidative stress. Front Immunol. 2021;12: 723654. [
DOI:10.3389/fimmu.2021.723654] [
PMID]
17. Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and oxidative stress. Biochemistry (Mosc). 2020;85: 1543-1553. [
DOI:10.1134/S0006297920120068] [
PMID]
18. Ebrahimi M, Norouzi P, Aazami H, Moosavi-Movahedi AA. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int J Biol Macromol. 2021;189: 802-818. [
DOI:10.1016/j.ijbiomac.2021.08.095] [
PMID]
19. Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. Changes in oxidative markers in COVID-19 patients. Arch Med Res. 2021;52(8): 843-849. [
DOI:10.1016/j.arcmed.2021.06.004] [
PMID]
20. Yaghoubi N, Youssefi M, Jabbari Azad F, Farzad F, Yavari Z, Zahedi Avval F. Total antioxidant capacity as a marker of severity of COVID‐19 infection: Possible prognostic and therapeutic clinical application. J Med Virol. 2022; 94(4): 1558-1565. [
DOI:10.1002/jmv.27500] [
PMID]
21. Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular mechanisms related to responses to oxidative stress and antioxidative therapies in COVID-19: a systematic review. Antioxidants. 2022;11(8): 1609. [
DOI:10.3390/antiox11081609] [
PMID]
22. Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021;42: 100897. [
DOI:10.1016/j.nmni.2021.100897] [
PMID]
23. Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Dymicka-Piekarska V, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, et al. Redox biomarkers-An effective tool for diagnosing COVID-19 patients and convalescents. J Inflamm Res. 2024;17: 2589-2607. [
DOI:10.2147/JIR.S456849] [
PMID]
24. Javanbakht MH, Sadria R, Djalali M, Derakhshanian H, Hosseinzadeh P, Zarei M, et al. Soy protein and genistein improves renal antioxidant status in experimental nephrotic syndrome. Nefrologia. 2014;34(4):483-490.
25. Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol. 2021; 42: 101869. [
DOI:10.1016/j.redox.2021.101869] [
PMID]
26. Massalska MA, Gober HJ. How children are protected from COVID-19? A historical, clinical, and pathophysiological approach to address COVID-19 susceptibility. Front Immunol. 2021; 12: 646894. [
DOI:10.3389/fimmu.2021.646894] [
PMID]