Volume 21, Issue 3 (Pajouhan Scientific Journal, Summer 2023)                   Pajouhan Sci J 2023, 21(3): 175-185 | Back to browse issues page

Ethics code: IR.IAU.H.REC.1401.049


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azadian E, Majlesi M, Saberifar S. Linear and Non-Linear Changes of Center of Pressure due to Vestibular System Disorders: Comparison of Balance and Gait in Hearing and Sensorineural Deaf Children. Pajouhan Sci J 2023; 21 (3) :175-185
URL: http://psj.umsha.ac.ir/article-1-980-en.html
1- Department of Physical Education and Sport Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran , azadian1@yahoo.com
2- Department of Physical Education and Sport Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Abstract:   (897 Views)
Background and Objectives: Balance weakness and changes in the walking pattern of deaf children due to vestibular disorders have been clarified by past studies. This study aimed to investigate static balance and walking in sensorineural deaf children with two methods of linear and non-linear assessment of posture control.
Materials and Methods: This descriptive study was conducted on 20 hearing and healthy boys (10.80±1.46 years old) and 20 boys with deafness greater than 75 dB (11.30±1.89 years old). Static balance was evaluated during tandem stance and with feet together on an unstable surface using a force plate. Kinetic and kinematic variables of gait were also investigated. The independent and dependent t-tests were used to assess the inter-group and between-group differences in SPSS21 software with p < 0.05.
Results: The results of static balance showed a significant difference between groups in linear variables. The amount of sway, path, area, and speed of the center of pressure movement in the deaf was significantly higher than that in the control group (P<0.05). However, entropy (non-linear evaluation) was only significant in the medial-lateral direction of tandem test (P<0.05). Lower gait speed and an increase in the medial-lateral component of the ground reaction force were observed in the deaf (P<0.05).
Conclusion: According to the results, the evaluated linear variables were more sensitive to deafness and vestibular system disorder than the nonlinear variable. Entropy is a sign of variability and irregularity in a person's performance; therefore, deaf people may be more likely to be vulnerable in the medial-lateral direction due to more irregularity in this direction.
Full-Text [PDF 1488 kb]   (410 Downloads)    
Type of Study: Research Article | Subject: Rehabilitation
Received: 2022/12/21 | Accepted: 2023/05/15 | Published: 2023/09/22

References
1. Asariha A, Azadian E. Relationship Between Balance and Attentional Function in Deaf and Healthy People (Per-sian). J Sport Biomech. 2018;4(3):14-27. [DOI:10.32598/biomechanics.4.3.14]
2. Majlesi M, Farahpour N, Azadian E, Amini M. The effect of interventional proprioceptive training on static balance and gait in deaf children. Res Dev Disabil. 2014;35(12):3562-7. [DOI:10.1016/j.ridd.2014.09.001] [PMID]
3. Vernadakis N, Papastergiou M, Giannousi M, Panagiotis A. The effect of an exergame-based intervention on balance ability on deaf adolescents. Sport Science. 2018;11(1):36-41.
4. Sokolov M, Gordon KA, Polonenko M, Blaser SI, Papsin BC, Cushing SL. Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear Res. 2019;372:52-61. [DOI:10.1016/j.heares.2018.03.032] [PMID]
5. Derlich M, Kręcisz K, Kuczyński M. Attention demand and postural control in children with hearing deficit. Res Dev Disabil. 2011;32(5):1808-13. [DOI:10.1016/j.ridd.2011.03.009] [PMID]
6. Ryumin D, Ivanko D, Kagirov I, Axyonov A, Karpov A. Vision-Based Assistive Systems for Deaf and Hearing Impaired People. Computer Vision in Advanced Control Systems-5: Advanced Decisions in Technical and Medical Applications. 2020:197-223. [DOI:10.1007/978-3-030-33795-7_7]
7. Rine RM, Braswell J, Fisher D, Joyce K, Kalar K, Shaffer M. Improvement of motor development and postural control following intervention in children with sensorineural hearing loss and vestibular impairment. Int J Pediatr Otorhinolaryngol. 2004;68(9):1141-8. [DOI:10.1016/j.ijporl.2004.04.007] [PMID]
8. Selz PA, Girardi M, Konrad HR, Hughes LF. Vestibular deficits in deaf children. Otolaryngol Head Neck Surg. 1996;115(1):70-7. [DOI:10.1016/S0194-5998(96)70139-0] [PMID]
9. Li Y, Sun J, Yao C. Hearing loss detection in complex setting by stationary wavelet Renyi entropy and three-segment biogeography-based optimization. Multi-Chaos, Fractal and Multi-fractional Artificial Intelligence of Different Complex Systems: Elsevier; 2022;215-29. [DOI:10.1016/B978-0-323-90032-4.00021-3]
10. Norasteh AA, Zarei H. Studying balance in deaf people: A systematic review study. Jrehab. 2019;20(1):2-15. [DOI:10.32598/rj.20.1.2]
11. Melo RS, Lemos A, Paiva GS, Ithamar L, Lima MC, Eickmann SH, et al. Vestibular rehabilitation exercises programs to improve the postural control, balance and gait of children with sensorineural hearing loss: A systematic review. Int J Pediatri Otorhinolaryngol. 2019;127:109650. [DOI:10.1016/j.ijporl.2019.109650] [PMID]
12. Melo RD, Silva PW, Tassitano RM, Macky CF, Silva LV. Balance and gait evaluation: comparative study between deaf and hearing students. Rev Paul Pediatr. 2012;30:385-91. [DOI:10.1590/S0103-05822012000300012]
13. Jafarnezhadgero AA, Majlesi M, Azadian E. Gait ground reaction force characteristics in deaf and hearing children. Gait Posture. 2017;53:236-40. [DOI:10.1016/j.gaitpost.2017.02.006] [PMID]
14. de Souza Melo R. Gait performance of children and adolescents with sensorineural hearing loss. Gait Posture. 2017;57:109-14. [DOI:10.1016/j.gaitpost.2017.05.031] [PMID]
15. Agrawal Y, Merfeld DM, Horak FB, Redfern MS, Manor B, Westlake KP, et al. Aging, vestibular function, and balance: proceedings of a national institute on aging/national institute on deafness and other communication disorders workshop. J Gerontol A Biol Sci Med Sci. 2020;75(12):2471-80. [DOI:10.1093/gerona/glaa097] [PMID] []
16. Sorkheh E, Majlesi M, Jafarnezhadgero AA. Survey of Asymmetry Index of Gait Ground Reaction Force Frequency Spectrum in Deaf and Hearing Male Children of Hamedan City in 2017. JRUMS. 2018;17(6):553-66.
17. Zwergal A, Strupp M, Brandt T. Advances in pharmacotherapy of vestibular and ocular motor disorders. Expert Opin Pharmacother. 2019;20(10):1267-76. [DOI:10.1080/14656566.2019.1610386] [PMID]
18. Ghanbarzadeh A, Azadian E, Majlesi M, Jafarnezhadgero AA, Akrami M. Effects of Task Demands on Postural Control in Children of Different Ages: A Cross-Sectional Study. Appl Sci. 2022;12(1):113. [DOI:10.3390/app12010113]
19. Azadian E, Torbati HRT, Kakhki ARS, Farahpour N. The effect of dual task and executive training on pattern of gait in older adults with balance impairment: A Randomized controlled trial. Arch Gerontol Geriatr. 2016;62:83-9. [DOI:10.1016/j.archger.2015.10.001] [PMID]
20. Dusing SC, Izzo TA, Thacker LR, Galloway JC. Postural complexity differs between infant born full term and preterm during the development of early behaviors. Early Hum Dev. 2014;90(3):149-56. [DOI:10.1016/j.earlhumdev.2014.01.006] [PMID] []
21. Stergiou N, Decker LM. Human movement variability, nonlinear dynamics, and pathology: is there a connection?. Hum Mov Sci. 2011;30(5):869-88. [DOI:10.1016/j.humov.2011.06.002] [PMID] []
22. Stergiou N, Yu Y, Kyvelidou A. A perspective on human movement variability with applications in infancy motor development. Kinesiology Review. 2013;2(1):93-102. [DOI:10.1123/krj.2.1.93]
23. Haid T, Federolf P. Human postural control: assessment of two alternative interpretations of center of pressure sample entropy through a principal component factorization of whole-body kinematics. Entropy. 2018;20(1):30. [DOI:10.3390/e20010030] [PMID] []
24. Gao J, Hu J, Buckley T, White K, Hass C. Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLoS One. 2011;6(9):e24446. [DOI:10.1371/journal.pone.0024446] [PMID] []
25. Lubetzky AV, Harel D, Lubetzky E. On the effects of signal processing on sample entropy for postural control. PloS one. 2018;13(3):e0193460. [DOI:10.1371/journal.pone.0193460] [PMID] []
26. Ramdani S, Seigle B, Lagarde J, Bouchara F, Bernard PL. On the use of sample entropy to analyze human postural sway data. Med Eng Phys. 2009;31(8):1023-31. [DOI:10.1016/j.medengphy.2009.06.004] [PMID]
27. Pierce SR, Paremski AC, Skorup J, Stergiou N, Senderling B, Prosser LA. Linear and nonlinear measures of postural control in a toddler with cerebral palsy: Brief report. Pediatr Phys Ther. 2020;32(1):80-3. [DOI:10.1097/PEP.0000000000000669] [PMID]
28. Kiefer AW, Armitano-Lago CN, Cone BL, Bonnette S, Rhea CK, Cummins-Sebree S, et al. Postural control development from late childhood through young adulthood. Gait Posture. 2021;86:169-73. [DOI:10.1016/j.gaitpost.2021.02.030] [PMID]
29. O'Sullivan R, Munir K, Keating L. Idiopathic toe walking-A follow-up survey of gait analysis assessment. Gait Posture. 2019;68:300-4. [DOI:10.1016/j.gaitpost.2018.12.011] [PMID]
30. Busa MA, Jones SL, Hamill J, van Emmerik RE. Multiscale entropy identifies differences in complexity in postural control in women with multiple sclerosis. Gait Posture. 2016;45:7-11. [DOI:10.1016/j.gaitpost.2015.12.007] [PMID]
31. Sun R, Hsieh KL, Sosnoff JJ. Fall risk prediction in multiple sclerosis using postural sway measures: a machine learning approach. Sci Rep. 2019;9(1):16154. https://doi.org/10.1038/s41598-019-52697-2 [DOI:10.1038/srep16154] [PMID] []
32. Hoffmann CP, Seigle B, Frère J, Parietti-Winkler C. Dynamical analysis of balance in vestibular schwannoma patients. Gait Posture. 2017;54:236-41. [DOI:10.1016/j.gaitpost.2017.03.015] [PMID]
33. Yeh J-R, Lo M-T, Chang F-L, Hsu L-C. Complexity of human postural control in subjects with unilateral peripheral vestibular hypofunction. Gait Posture. 2014;40(4):581-6. [DOI:10.1016/j.gaitpost.2014.06.016] [PMID]
34. Potvin-Desrochers A, Richer N, Lajoie Y. Cognitive tasks promote automatization of postural control in young and older adults. Gait Posture. 2017;57:40-5. [DOI:10.1016/j.gaitpost.2017.05.019] [PMID]
35. Rhea CK, Diekfuss JA, Fairbrother JT, Raisbeck LD. Postural control entropy is increased when adopting an external focus of attention. Motor Control. 2019;23(2):230-42. [DOI:10.1123/mc.2017-0089] [PMID]
36. Besnard S, Lopez C, Brandt T, Denise P, Smith PF. The vestibular system in cognitive and memory processes in mammals: Frontiers Media SA; 2016. [DOI:10.3389/978-2-88919-744-6]
37. Blons E, Arsac LM, Gilfriche P, Deschodt-Arsac V. Multiscale entropy of cardiac and postural control reflects a flexible adaptation to a cognitive task. Entropy. 2019;21(10):1024. [DOI:10.3390/e21101024] []
38. Bigelow RT, Agrawal Y. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. J Vestib Res. 2015;25(2):73-89. [DOI:10.3233/VES-150544] [PMID]
39. Besnard S, Lopez C, Brandt T, Denise P, Smith PF. The vestibular system in cognitive and memory processes in mammalians. Front Integr Neurosci; 2015 ;9:55. [DOI:10.3389/fnint.2015.00055] [PMID] []
40. Black FO, Pesznecker S, Stallings V. Permanent gentamicin vestibulotoxicity. Otol Neurotol. 2004;25(4):559-69. [DOI:10.1097/00129492-200407000-00025] [PMID]
41. Van Hecke R, Danneels M, Dhooge I, Van Waelvelde H, Wiersema JR, Deconinck FJ, et al. Vestibular function in children with neurodevelopmental disorders: a systematic review. J Autism Dev Disord. 2019;49(8):3328-50. [DOI:10.1007/s10803-019-04059-0] [PMID]
42. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. [DOI:10.3758/BF03193146] [PMID]
43. De Kegel A, Maes L, Baetens T, Dhooge I, Van Waelvelde H. The influence of a vestibular dysfunction on the motor development of hearing‐impaired children. Laryngoscope. 2012;122(12):2837-43. [DOI:10.1002/lary.23529] [PMID]
44. Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait Posture. 2008;28(2):207-16. [DOI:10.1016/j.gaitpost.2007.11.009] [PMID]
45. Damavandi M, Dixon PC, Pearsall DJ. Ground reaction force adaptations during cross-slope walking and running. Hum Mov Sci. 2012;31(1):182-9. [DOI:10.1016/j.humov.2011.06.004] [PMID]
46. Winter DA. Biomechanics and motor control of human gait: normal, elderly and pathological. 1991.
47. Remaud A, Boyas S, Caron GAR, Bilodeau M. Attentional Demands Associated With Postural Control Depend on Task Difficulty and Visual Condition. J Mot Behav. 2012;44(5):329-40. [DOI:10.1080/00222895.2012.708680] [PMID]
48. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88(6):2297-301. [DOI:10.1073/pnas.88.6.2297] [PMID] []
49. Grassberger P, Procaccia I. Characterization of strange attractors. Phys Rev Lett. 1983;50(5):346. [DOI:10.1103/PhysRevLett.50.346]
50. Kaffashi F, Foglyano R, Wilson CG, Loparo KA. The effect of time delay on approximate & sample entropy calculations. Physica D Nonlinear Phenomena. 2008;237(23):3069-74. [DOI:10.1016/j.physd.2008.06.005]
51. Lewis S, Higham L, Cherry DB. Development of an exercise program to improve the static and dynamic balance of profoundly hearing-impaired children. Am Ann Deaf. 1985;130(4):278-84. [DOI:10.1353/aad.2012.1020] [PMID]
52. Yaghoubi Hamraz F, Majlesi M. Comparing Gait Variability Between Deaf and Normal-Hearing Children After Proprioception Training. J Sport Biomech. 2020;5(4):262-71. [DOI:10.32598/biomechanics.5.4.6]
53. Majlesi M, Azadian E, Farahpour N, Jafarnezhad AA, Rashedi H. Lower limb muscle activity during gait in individuals with hearing loss. Austral Phys Eng Sci Med. 2017;40(3):659-65. [DOI:10.1007/s13246-017-0574-y] [PMID]
54. Lipsitz LA, Goldberger AL. Loss of'complexity'and aging: potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806-9. [DOI:10.1001/jama.1992.03480130122036]
55. Manor B, Costa MD, Hu K, Newton E, Starobinets O, Kang HG, et al. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109(6):1786-91. [DOI:10.1152/japplphysiol.00390.2010] [PMID] []
56. Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297-308. [DOI:10.1016/S0268-0033(98)90092-4] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Pajouhan Scientific Journal

Designed & Developed by : Yektaweb